Well-posedness of eight problems of multi-modal statistical image-matching
نویسندگان
چکیده
Multi-Modal Statistical Image-Matching techniques look for a deformation field that minimizes some error criterion between two images. This is achieved by computing a solution of the parabolic system obtained from the Euler-Lagrange equations of the error criterion. We prove the existence and uniqueness of a classical solution of this parabolic system in eight cases corresponding to the following alternatives. We consider that the images are realizations of spatial random processes that are either stationary or nonstationary. In each case we measure the similarity between the two images either by their mutual information or by their correlation ratio. In each case we regularize the deformation field either by borrowing from the field of Linear elasticity or by using the Nagel-Enkelmann tensor. Our proof uses the Hille-Yosida theorem and the theory of analytical semi-groups. We then briefly describe our numerical scheme and show some experimental results. Key-words: Multi-modal Image Matching, Variational Methods, Registration, Optical Flow, Mutual Information, Correlation Ratio, Euler-Lagrange equations, Initial-value problems, Maximal monotone operators, Strongly continuous semigroups of linear bounded operators, Analytical semigroups of linear bounded operators. This work was partially supported by NSF grant DMS-9972228, EC grant Mapawamo QLG3-CT-2000-30161, INRIA ARCs IRMf and MC2, and Conacyt. Résultats sur le caractère bien posé de huit problèmes de mise en correspondance multimodale d’images Résumé : Les méthodes de mise en correspondance multimodale cherchent un champ de déformation qui minimise un critère d’erreur entre deux images. Ceci est accompli en calculant une solution du système d’EDP paraboliques obtenu à partir des équations d’Euler Lagrange du critère d’erreur. Nous démontrons existence et unicité de la solution pour ce système parabolique dans huit cas qui correspondent aux alternatives suivantes. Nous considérons que les images sont des réalisations de processus aléatoires spatiaux qui sont soit stationnaires soit non stationnaires. Dans chaque cas on mesure la similarité entre les deux images soit par l’information mutuelle, soit par le rapport de corrélation. Dans chaque cas nous régularisons le champ de déformation soit par un terme d’élasticité linéarisée, soit par de la diffusion anisotrope en utilisant le tenseur de Nagel-Enkelmann. Notre preuve utilise le théorème de Hille-Yosida. Nous décrivons ensuite brièvement la discrétisation des équations et nous montrons quelques résultats expérimentaux. Mots-clés : Mise en Correspondance Multimodale, Méthodes Variationnelles, Flot Optique, Information Mutuelle, Rapport de Corrélation, Équations d’Euler-Lagrange, Problèmes d’évolution, Opérateurs maximaux monotones, Semi-groupes d’opérateurs linéaires bornés fortement continus, Semi-groupes d’opérateurs linéaires bornés analytiques. Well-posedness of eight problems of multi-modal statistical image-matching 3
منابع مشابه
Hadamard Well-posedness for a Family of Mixed Variational Inequalities and Inclusion Problems
In this paper, the concepts of well-posednesses and Hadamard well-posedness for a family of mixed variational inequalities are studied. Also, some metric characterizations of them are presented and some relations between well-posedness and Hadamard well-posedness of a family of mixed variational inequalities is studied. Finally, a relation between well-posedness for the family of mixed variatio...
متن کاملPerformance Evaluation of Local Detectors in the Presence of Noise for Multi-Sensor Remote Sensing Image Matching
Automatic, efficient, accurate, and stable image matching is one of the most critical issues in remote sensing, photogrammetry, and machine vision. In recent decades, various algorithms have been proposed based on the feature-based framework, which concentrates on detecting and describing local features. Understanding the characteristics of different matching algorithms in various applications ...
متن کاملAn iterative Bayesian technique for Dense Image Point Matching
We present a conceptually simple algorithm for dense image point matching between two multi-modal (e.g. color) images. The algorithm is based on the assumption that correct image point matches satisfy locally a particular statistical distribution. Through an iterative evaluation of a local probability measure, global constraints are taken into account and the most likely set of image point matc...
متن کاملApplication of Radon Transform in Detecting Turning Angle of Bodies and in Reading Multi - Lingual Documents
Recently, image processing technique and robotic vision are widely applied in fault detection of industrial products as well as document reading. In order to compare the captured images from the target, it is necessary to prepare a perfect image, then matching should be applied. A preprocessing must therefore, be done to correct the samples’ and or camera’s movement which can occur during the...
متن کاملApplication of Radon Transform in Detecting Turning Angle of Bodies and in Reading Multi - Lingual Documents
Recently, image processing technique and robotic vision are widely applied in fault detection of industrial products as well as document reading. In order to compare the captured images from the target, it is necessary to prepare a perfect image, then matching should be applied. A preprocessing must therefore, be done to correct the samples’ and or camera’s movement which can occur during the...
متن کامل